Category Theory and Homological Algebra John C. Baez (University of California, Riverside): Categorification 'Categorification' is the process of finding category-theoretic analogs of set-theoretic concepts by replacing sets with categories, functions with functors, and equations between functions by natural isomorphisms between functors, which in turn should satisfy certain equations of their own, called `coherence laws'. Iterating this process requires a theory of `n-categories', algebraic structures having objects, morphisms between objects, 2-morphisms between morphisms and so on up to n-morphisms. After a brief introduction to n-categories and their relation to homotopy theory, we discuss algebraic structures that can be seen as iterated categorifications of the natural numbers and integers. John C. Baez (University of California, Riverside): From Finite Sets to Feynman Diagrams John C. Baez (University of California, Riverside): Higher-Dimensional Algebra and Planck-Scale Physics This is a nontechnical introduction to recent work on quantum gravity using ideas from higher-dimensional algebra. We argue that reconciling general relativity with the Standard Model requires a `background-free quantum theory with local degrees of freedom propagating causally'. We describe the insights provided by work on topological quantum field theories such as quantum gravity in 3-dimensional spacetime. These are background-free quantum theories lacking local degrees of freedom, so they only display some of the features we seek. However, they suggest a deep link between the concepts of `space' and `state', and similarly those of `spacetime' and `process', which we argue is to be expected in any background-free quantum theory. We sketch how higher-dimensional algebra provides the mathematical tools to make this link precise. Finally, we comment on attempts to formulate a theory of quantum gravity in 4-dimensional spacetime using `spin networks' and `spin foams'. | |
|