LitSearch: An Online Literary Database Slowinski, David (00) Works by this author 32nd Mersenne Prime, The; predictedby Mersenne. Copyright 2001 Keith Ito. All Rights Reserved. Admin Control Panel. http://daily.stanford.edu/litsearch/servlet/DescribeAuthor?name=Slowinski, David
LitSearch: An Online Literary Database Simms, W. Gilmore (William Gilmore) Sinclair, Upton Skelton, Oscar Douglas Skinner,Constance Lindsay Slaveikov, Pencho P. Slowinski, David Smiles, Samuel Smith http://daily.stanford.edu/litsearch/servlet/DescribeAuthor?name=S
Large Prime Numbers 1978 Landon Curt Noll (with Laura Nickel, now Ariel Glenn) 2^232091 6987 1979 LandonCurt Noll 2^44497-1 13395 1979 David Slowinski (with Harry Nelson) 2^86243 http://www.isthe.com/chongo/tech/math/prime/prime_press.html
Extractions: Mersenne Prime Digits and Names EAGAN, Minn., September 3, 1996 Computer scientists at SGI 's former Cray Research unit, have discovered a large prime number while conducting tests on a CRAY T90 series supercomputer. The prime number has 378,632 digits. Printed in newspaper-sized type, the number would fill approximately 12 newspaper pages. In mathematical notation, the new prime number is expressed as , which denotes two, multiplied by itself 1,257,787 times, minus one. Numbers expressed in this form are called Mersenne prime numbers after Marin Mersenne, a 17th century French monk who spent years searching for prime numbers of this type. See Chris Callwell's prime page for more information on prime numbers. Prime numbers can be divided evenly only by themselves and one. Examples include 2, 3, 5, 7, 11 and so on. The Greek mathematician
SAVEgateway Document Delivery systems that in turn help solve realworld problems such as cryptography, improvingweather forecasts and designing safer cars, said David Slowinski, the other http://www.isthe.com/chongo/tech/math/prime/mercnews.html
Extractions: Page: 1A When the British mountaineer George Leigh Mallory was asked why he wanted to scale Mount Everest, he replied: ''Because it's there.'' A related urge sparks computer scientists at Silicon Graphics Inc.'s Cray Research unit, who will announce today that they've discovered the world's largest-known prime number - and a special kind of prime number at that. This one is 378,632 digits long, roughly 120 single-spaced typewritten pages - and ''a rare jewel,'' said co-discoverer Paul Gage. But the way they found it, using sophisticated programming on high-powered supercomputers, goes well beyond mathematical mountain climbing. The techniques help create and test computer systems that in turn help solve real-world problems such as cryptography, improving weather forecasts and designing safer cars, said David Slowinski, the other co-discoverer of the latest record number. Using a Cray T94 supercomputer, Slowinski and Gage found what is currently the biggest example of a Mersenne prime number, named after a 17th-century French monk, Father Marin Mersenne, who had a thing for numbers. A prime number is an integer greater than zero whose divisors are only itself and 1. (The number 2 is prime because it can only be divided evenly by 1 and 2, for example). Mersenne numbers are primes that take the form 2 to some power, minus 1 - in other words, 2 multiplied by itself a certain number of times with 1 subtracted from the result.
Extractions: A1,28,Amdahl 6 - 1989 A2,30,Amdahl 6 - 1989 B1,64,Dave Boyd C1,64,Nick Craig-Wood. StongARM machines. D1,9,David Slowinski D2,10,David Slowinski D3,11,David Slowinski D4,12,David Slowinski D5,13,David Slowinski D6,14,David Slowinski D7,15,David Slowinski D8,16,David Slowinski D9,17,David Slowinski E,64,Ernst Mayer v2.3 through 2.4c - residues may have up to 3 digits wrong E1,64,Ernst Mayer v2.4d - residue bug fixed. E2,64,Ernst Mayer v2.5 G,15,Gary Gostin G2,64,Glucas v. 2.2 G29,64,Glucas with initial shift counts J,12,John Sweeney. Mac version 1.1 - bug in residue code. J1,64,John Sweeney. Mac version 1.2 - same as 1.1 but residue bug fixed. J2,64,John Sweeney. Mac version 1.3 - radix 4 implementation J3,64,John Sweeney. Mac version 1.4 - Bug fix. prev versions can give bad data J4,64,John Sweeney. MacLL v1.0b1 M,64,Peter Marksteiner. M1,64,Woltman - OS/2 Version of WPn (Marcel van de Vusse) M3,64,Woltman - OS/2 Version of WQn (Michel van Loon) N1,15,Nick Myrman. Home grown FFT. residues up to 15 bits - can be off by 1. N2,15,Nick Myrman. Crandall FFT. residues up to 15 bits - can be off by 1. O1,64,Woltman - OS/2 version of WPn (Matan Ziv-Av) S,15,Dave Smitley U,15,Unknown U2,28,Unknown (sent to David Slowinski) W1,0,Woltman - All integer version W2,64,Woltman - Early floating point version W4,64,Woltman - First Web release W5,64,Woltman - Separate lucas14 and 15. pre-factoring - Win 3.1 W6,64,Woltman - Windows 95 version of W5 - Win 95 W7,64,Woltman - Vastly improved factoring algorithm - Win 3.1 W8,64,Woltman - Vastly improved factoring algorithm - Win 95 W9,64,Woltman - Better self-test. fixed factoring continue bug - Win 3.1 WA,64,Woltman - Better self-test. fixed factoring continue bug - Win 95 WB,64,Woltman - No two-to-phi array. more error checking - Win 3.1 WC,64,Woltman - No two-to-phi array. more error checking - Win 95 WL,64,Woltman - No two-to-phi array. more error checking - Linux WP0,64,Woltman - PFA version - Win 3.1 WP1,64,Woltman - PFA version - Win 95 WP2,64,Woltman - PFA version - Linux WP3,64,Woltman - PFA version - Win 3.1 Screen Saver WP4,64,Woltman - PFA version - Win 95 Screen Saver WP5,64,Woltman - PFA version - Win NT Service WQ0,64,Woltman - Better error checking - Win 3.1 WQ1,64,Woltman - Better error checking - Win 95 WQ2,64,Woltman - Better error checking - Linux WQ3,64,Woltman - Better error checking - Win 3.1 Screen Saver WQ4,64,Woltman - Better error checking - Win 95 Screen Saver WQ5,64,Woltman - Better error checking - Win NT Service WQ6,64,Woltman - Better error checking - UNIXWare version compiled by MF WR1,64,Woltman - Networked version - Win 95 WR2,64,Woltman - Networked version - Linux WR5,64,Woltman - Networked version - Win NT Service WR7,64,Woltman - Networked version - OS/2 port by Michiel van Loon WS0,64,Woltman - Exp to 20.5M - Win 3.1 WS1,64,Woltman - Exp to 20.5M - Win 95 WS2,64,Woltman - Exp to 20.5M - Linux WS5,64,Woltman - Exp to 20.5M - Win NT Service WS7,64,Woltman - Exp to 20.5M - OS/2 port by Michiel van Loon WT0,64,Woltman - Shifted starting value - Win 3.1 WT1,64,Woltman - Shifted starting value - Win 95 WT2,64,Woltman - Shifted starting value - Linux WT5,64,Woltman - Shifted starting value - Win NT Service WT7,64,Woltman - Shifted starting value - OS/2 port by Michiel van Loon WU0,64,Woltman - Works above 2^22 - Win 3.1 WU1,64,Woltman - Works above 2^22 - Win 95 WU2,64,Woltman - Works above 2^22 - Linux WU5,64,Woltman - Works above 2^22 - Win NT Service WU7,64,Woltman - Works above 2^22 - OS/2 port by Michiel van Loon WV1,64,Woltman - Even faster! - Win 95 WV2,64,Woltman - Even faster! - Linux WV3,64,Woltman - Even faster! - Solaris WV5,64,Woltman - Even faster! - Win NT Service WV6,64,Woltman - Even faster! - FreeBSD WV7,64,Woltman - Even faster! - OS/2 port by Michiel van Loon WW1,64,Woltman - P-1 - Win 95 WW2,64,Woltman - P-1 - Linux WW5,64,Woltman - P-1 - Win NT Service WW6,64,Woltman - P-1 - FreeBSD WX1,64,Woltman - SSE2 and prefetch - Win 95 WX2,64,Woltman - SSE2 and prefetch - Linux WX5,64,Woltman - SSE2 and prefetch - Win NT Service WY1,64,Woltman - New FFT crossovers WY2,64,Woltman - New FFT crossovers WY5,64,Woltman - New FFT crossovers X,64,Richard Crandall program and it's successors - UNIX X1,32,Crandall's program - UNIX
Mersenne Primes Curt Noll Laura A. Nickel (Cyber 174) 26 23209 6987 13973 1979 Landon Curt Noll(Cyber 174) 27 44497 13395 26790 1979 David Slowinski Harry L. Nelson (Cray http://pw1.netcom.com/~hjsmith/Perfect/Mersenne.html
Extractions: N is an even perfect number if and only if It should also be noted that for 2^q - 1 to be prime q must be prime. So when we search for even perfect numbers, we search on q equal to the primes. The numbers M(q) = 2^q - 1 (with q prime) are called Mersenne numbers. If M(q) = is prime then it is called a Mersenne prime. If a prime q makes a Mersenne number a Mersenne prime, then P(q) = 2^(q-1) * (2^q - 1) is a Perfect number. Here are the 39 known Mersenne primes, M(q), as of Nov 14, 2001: The way to determine if 2^q - 1 is prime, given that q is an odd prime, is to use the Lucas-Lehmer test: Return to Perfect Numbers
Cruise Chip 27, 44,497, 8.54509 *10^13394, 1979, Harry L. Nelson David Slowinski, Cray1.28, 86,243, 5.36927 *10^25961, 1982, David Slowinski Lawrence Livermore Lab, http://www.cruisechip.com/mersenne.htm
Extractions: Home Resume Mathematics Loads Links Site Map Cruise Chip is the combination of the new technology of intelligence encapsulation and the classical metatheme of moneyed luxury. Enjoy the paradigm! A Historical Summary of Mersenne Primes This is a copy of similar tables brought up to date and merged together. Please E-mail me any corrections. Note for example that M10 is given as 6.18970 *10^26. This represents the 27-digit number 618,970,019,642,690,137,449,562,111. Mersenne Prime Table M Exponent
Bookshare.org - Books By Author Please log in. Books by David Slowinski. Here is a list of our books by David Slowinski .There is 1 book by this author in our collection. This is book 1 of 1. http://www.bookshare.org/web/BooksByAuthor.html?author_id=180
Bookshare.org - Books By Author John Sladek. Frank G. Slaughter. Jim Sleeper. E. Dendy Sloan. Joan Slonczewski.David Slowinski. Lass Small. Julie Smart. Samuel Smiles. Jane Smiley. Adam Smith. http://www.bookshare.org/web/BooksByAuthor.html?authorstring=S&firstlast=N
Nanobiographies Adi ; Shanks, Daniel Charles (1917) ; Slowinski, David ; Spiro, Claudia http://algo.inria.fr/banderier/Recipro/node53.html
Maiores_primos David Slowinski,1985. 2 132049 -1, 39751, David Slowinski, 1983. 2 86243 -1, 25962, David Slowinski,1982. http://www.educ.fc.ul.pt/icm/icm98/icm12/recordistas.htm
PRIS Meeting Minutes, 2 December 1996 ATTENDANCE Board John d'Amato, Ed Green, Jerry Kennedy, Bill Kusk, Edith Leer,Chad McDowell, Gordon Moffatt, John Slowinski, David Trudeau RegretsLarry http://www.pris.bc.ca/pris/prisinfo/minutes/dec2_96.html
PRIS Meeting Minutes, 4 November 1996 ATTENDANCE Board John d'Amato, Bill Kusk, Edith Leer, John Slowinski, David TrudeauRegrets Ed Green, Jerry Kennedy, Larry Legault, Chad McDowell, Gordon http://www.pris.bc.ca/pris/prisinfo/minutes/nov4_96.html
Extractions: System Expansion Requirements FINANCIAL REPORT SUMMARY as at 1 NOVEMBER 1996 Bank Balances Accounts Receivable, Other than Memberships Accounts Receivable, Memberships Credit on Membership Accounts Prepayments for Future Services Accounts Payable Liabilities LIQUID POSITION Capital Assets Less Accumulated Depreciation BALANCE UPDATE ON CONTRACT WITH SD 59 John d'Amato reports that the School Board is unable to sign a contract with PRIS for the exchange of Internet services for building rental under the previously negotiated terms, because of a provincial initiative to provide all schools, libraries, colleg es, and museums with internet access under the PLNet initiative. PRIS has been assured verbally by local school board officials that the existing arrangement with PRIS is not threatened in principle.
Www.mersenne.org/news1.txt David Slowinski As most of you know, David Slowinski has beensearching for Mersenne primes for 17 years using spare CPU cycles on his http://www.mersenne.org/news1.txt
35th Mersenne Prime Discovered supercomputer. The new Mersenne prime was independently verifiedby David Slowinski a codiscoverer of the last Mersenne prime. http://www.mersenne.org/1398269.htm
Sciaga.pl - Liczby Pierwsze ma przede wszystkim wchodzaca w sklad specjalnego zespolu Silicon GraphicsCray Research slawna para matematyków David Slowinski Paul Gage. http://slimak.sciaga.pl/prace/praca/5640.htm
Extractions: sciaga prace / przedmiot: Matematyka reklama kontakt info Uwaga - tylko u Nas! masz mo¿liwo¶æ sci±gniêcia nowych gier do telefonów komórkowych napisanych w JAVIE. Je¿eli posiadasz telefon marki NOKIA (3510i, 8910i, 3530, 3560, 7560, 3410, 6310i, 3650) lub SIEMENS (MT50, M50, C55) to skorzystaj ju¿ dzi¶. zobacz wiêcej Temat: Liczby Pierwsze Liczby pierwsze s± to takie liczby naturalne, które wiêksze s± od jedynki i podzielne bez reszty przez sam± siebie i jedynkê. Jednym z pytañ dotycz±cych liczb pierwszych, które narzuca siê ka¿demu jest pytanie o liczbê tych liczb: ile ich jest, skoñczenie wiele czy, wrêcz przeciwnie, nieskoñczenie? Na to akurat znamy odpowied¼ od czasów staro¿ytnych: liczb pierwszych jest nieskoñczenie wiele. Wiedzia³ o tym ju¿ w IV w. p.n.e. sam wielki Euklides. Innymi s³owy, nie istnieje najwiêksza liczba pierwsza: dla ka¿dej danej liczby pierwszej mo¿emy znale¼æ wiêksz±. Istotnie, gdyby by³a jedynie skoñczona liczba liczb pierwszych (np. P) to iloczyn wszystkich tych P liczb, zwiêkszony o jedynkê, musia³by byæ te¿ pierwszy (bo przy dzieleniu przez któr±kolwiek z tych P liczb dawa³by oczywi¶cie. resztê jeden); zatem przypuszczenie, ¿e jest ich P, jest fa³szywe, bowiem znale¼li¶my oto nastêpn±. Ta do¶æ prosta konstrukcja daje równie¿ teoretycznie przepis na konstruowanie coraz wiêkszych liczb. Np. 2*3*5+1=31; 31 jest liczb± pierwsz±. Nietrudno spostrzec , ¿e ten przepis ma te¿ wady. Nie mo¿na nim otrzymaæ np.: 11,13,17,19,...); po drugie omówiony powy¿ej zapis konstruowanej liczby trudno uznaæ za przejrzysty. Dodam jeszcze, ¿e w ogóle nie istnieje - i nie mo¿e istnieæ - ¿aden "wzór", w zwyk³ym sensie tego s³owa który by "produkowa³" wszystkie liczby po kolei. Nie oznacza to, i¿ nie mo¿na podaæ wzorów, które daj± nam ca³± seriê takich liczb, dowolnej zreszt± d³ugo¶ci. Skoro liczb pierwszych jest nieskoñczenie wiele, to mo¿e do odnajdywania kolejnych przyda siê inny algorytm.
The Largest Known Primes The primality of this number was verified by David Slowinski who has found severalof the recent record primes. 2 216091 1, 65050, David Slowinski, 1985, http://w3.impa.br/~gugu/mersenne/largest.html
Extractions: largest twin ... Mersenne , and Sophie Germain The Complete List of the Largest Known Primes Other Sources of Prime Information Euclid's Proof of the Infinitude of Primes ... Comments? Suggestions? New records? New Links? Primes: Home Largest Proving How Many? ... Guestbook Note: The correct URL for this page is http://www.utm.edu/research/primes/largest.html An integer greater than one is called a prime number if its only positive divisors (factors) are one and itself. For example, the prime divisors of 10 are 2 and 5; and the first six primes are 2, 3, 5, 7, 11 and 13 ( the first 10,000 , and other lists are available). The Fundamental Theorem of Arithmetic shows that the primes are the building blocks of the positive integers: every positive integer is a product of prime numbers in one and only one way, except for the order of the factors. The ancient Greeks proved (ca 300 BC) that there were infinitely many primes and that they were irregularly spaced (there can be arbitrarily large gaps between successive primes ). On the other hand, in the nineteenth century it was shown that the number of primes less than or equal to
The Mad Cybrarian's Library: Free Online E-texts - Authors S-Sl Slowinski, David The 32nd Mersenne Prime, Predicted by Mersenne (SUBJECT Numbers,Prime) Gutenberg FTP UITXT 236 Kb ZIP121 Kb SLTXT - ZIP ENTXT - ZIP. http://www.fortunecity.com/victorian/richmond/88/1libs.htm
Extractions: web hosting domain names email addresses related sites Sabatini, Rafael Saint-Pierre, Bernadin de Saki [AKA: Munro, Hector Hugh] Saltman, Benjamin : Salza, Giuseppe Sand, George: Sandburg, Carl Sands, George W.: Sanger, Margaret: Sangster, Margaret E. Sardica, Council of Canons (NewAdvent) Sarton, May Saunder, George Savage, Ernest Albert: Savage, Philip Henry Saxo Grammaticus ("Saxo the Learned") fl. Late 12th - Early 13th Century A.D. Sayers, Dorothy L. Scavezze, Dan